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Abstract
The scattering processes between the quasiparticles in the spin-up superfluid
and the quasiparticles in the spin-down normal fluid are added to the other
relevant scattering processes in the Boltzmann collision terms. The Boltzmann
equation has been solved exactly for temperatures just below Tc1. The shear
viscosity component of the A1-phase drops as C1(1 − T

Tc1
)1/2. The numerical

factor C1 is in fairly good agreement with the experiments.

1. Introduction

The viscosity of the A1-phase of superfluid 3He is investigated at temperatures close to the
transition temperature, Tc1, where the maximum gap in the excitation spectrum is small in
comparison with the thermal energy kB T . It is supposed that in the A1-phase only spin-up pairs
exist, since it follows from the free energy expression that below the transition temperature, Tc1,
it is lowered by formation of spin-up pairs. Formation of spin-down pairs becomes favourable
below a temperature Tc2 [1].

A number of viscosity measurements have been carried out in the A1 and A2 phases of
superfluid 3He at different high magnetic fields [2, 3]. The previous viscosity measurements
were determined in low magnetic fields [4]. All the results show a sharp decrease proportional
to the opening of the superfluid energy gap, � ∝ (1 − T

Tc1
)1/2 near Tc1 and goes as T −2 for

very low temperatures. The calculations of the former region are under construction and will
be published elsewhere. Obtaining the values of viscosity coefficient on the whole region of
temperatures is not analytically possible.

The viscosity of the A-phase, in zero magnetic field, has been calculated exactly for
temperatures close to Tc by Bhattacharyya et al [5] and Pethick et al [6], and the viscosity
in the presence of a magnetic field has been considered by Shahzamanian [7]. The results of
Bhattacharyya et al and Pethick et al on the viscosity drop as (1 − T

Tc
)1/2 for temperatures

close to Tc and the exact coefficient of (1 − T
Tc

)1/2 has been expressed as a function of normal
state properties.

In this paper we use the Boltzmann equation approach to obtain the viscosity of the A1-
phase for temperatures just below Tc1. One, therefore, needs to derive the correct form of
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the Boltzmann equation. This problem in the A-phase has been discussed by Bhattacharyya
et al [5] and Pethick et al [6] extensively. The streaming terms in the Boltzmann equation
have the standard form, but the collision term is more complicated than the normal state. In a
normal Fermi liquid at low temperatures the only important collision process is the scattering
of pairs of quasiparticles, but in a superfluid the quasiparticle number is not conserved, so
one also has to take into account decay processes in which a single quasiparticle decays into
three, and the inverse processes, in which three quasiparticles coalesce to form one. In the
A1-phase one has to take into account other processes which come from the scattering between
superfluid quasiparticles in the spin-up population, the so-called Bogoliubov quasiparticles,
and the normal fluid quasiparticles in the spin-down population. We shall evaluate the collision
probabilities for these new processes.

The Boltzmann equation for a normal Fermi liquid has been solved exactly [8, 9]. This
equation has been also solved exactly for temperatures close to Tc by Bhattacharyya et al [5].
The difference between the collision terms for the normal and superfluid states was treated as
a perturbation. We use their method to solve the Boltzmann equation for the A1-phase.

The paper is organized as follows. In section 2 by writing the interaction between the
quasiparticles we obtain the collision terms for all the processes. Section 3 is allocated to
writing the Boltzmann equation and its solution for the A1-phase, then the shear viscosity
tensor is calculated for temperatures close to Tc1. Finally in section 4 we give some remarks
and concluding results.

2. Collision integral

To obtain the collision integral, we start with the interaction between the quasiparticles in the
spin-up superfluid and spin-down normal fluid. This will be found by performing a Bogoliubov
transformation on the normal-state interaction. The Bogoliubov transformation between the
normal quasiparticle creation and annihilation operators a+

�p,σ
and a �p,σ and the creation and

annihilation operators α+
p̄,σ and α �p,σ in the superfluid may be written as

a �p,σ = u( �p)σσ ′α �p,σ ′ − υ( �p)σσ ′α+
− �p,σ ′

a+
− �p,σ = υ∗( �p)σσ ′α �p,σ ′ + u( �p)σσ ′α+

− �p,σ ′ .
(1)

For the non-unitary state of the A1-phase, we have the following properties between u and
υ [10].

u(− �P)↑↑ = u( �P)↑↑, and υ(− �P)↑↑ = −υ( �P)↑↑. (2)

The normal-state interaction is

H = 1
4

∑
1,2,3,4

〈3, 4|T |1, 2〉a+
4 a+

3 a1a2 (3)

where i = 1, 2, 3 and 4 stands for both momentum ( �Pi ) and spin (σi ) variables. By using (1)
in (3) the interaction between quasiparticles in the A1-phase of superfluid is

H = 1
4

∑
�P1, �P2, �P3, �P4

{Tt [−υ∗( �P4)↑↑α �P4↑ − u( �P4)↑↑α+
�P4↑]

× [−υ∗( �P3)↑↑α− �P3↑ − u( �P3)↑↑α+
�P3↑][u( �P1)↑↑α �p1↑ − υ( �P1)↑↑α+

− �p1↑]

× [u( �P2)↑↑α �P2↑ − υ( �P2)↑↑α+
− �p2↑] + 1

2 (Tt − Ts)[−υ∗( �P4)↑↑α− �P4↑
− u( �P4)↑↑α+

�P4↑]α+
�P3↓[u( �P1)↑↑α �P1↑ − υ( �P1)↑↑α+

− �p1↑]α �P2↓ + 1
2 (Tt + Ts)α

+
P̄4↓

× [−υ∗( �P3)↑↑α− �P3↑ − u( �P3)↑↑α+
�P3↑][u( �P1)↑↑α �P1↑ − υ( �P1)↑↑α− �P1↑]α �P2↓} (4)
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where the amplitudes are given by

〈↑↑ |T | ↑↑〉 ≡ Tt , 〈↑↓ |T | ↑↓〉 ≡ 1
2 (Tt + Ts) and 〈↑↓ |T | ↓↑〉 ≡ 1

2 (Tt − Ts).

(5)

The gap parameter of the non-unitary state of the A1-phase, � p̄, has the same P̄-
dependence as the A-phase, i.e. it has the axial structure. Furthermore in the A1-phase we
may write E2

�P = ε2
�P + |� �P↑↑|2, where ε �P is the normal-state quasiparticle energy measured

with respect to the chemical potential and � �P↑↑ is the magnitude of the gap in the direction
�P on the Fermi surface [10]. For the discussion of collision processes in the A1-phase at

temperatures just below the transition temperature it is most convenient to work in terms of
quasiparticles which are related as closely as possible to the quasiparticle in the normal state.
Accordingly we take the quasiparticle energy to be

E �P↑ = (ε2
�P↑ + �2

�p↑↑)1/2 sgn ε �P . (6)

Since we are interested only in changes in the collision integral of order � �p, we need,
therefore, to retain only terms involving no more than a single υ �P factor. As we have
mentioned previously, in a superfluid the quasiparticle number is not conserved, and therefore
scattering processes other than those in a normal Fermi liquid can occur. The first term in
equation (4) indicates the scattering processes similar to those in the A-phase, i.e. two, decay
and coalescence processes, which have been considered extensively by Bhattacharyya et al
[5]. Here for brevity we write the final results of the collision terms corresponding to the first
term in equation (4)(

∂n1

∂ t

)
coll

= −
∑

�P2, �P3, �P4

2π

h̄

1

4
|Tt |2n1n2(1 − n3)(1 − n4)δ �P1+ �P2, �P3+ �P4

δ(ε1 + ε2 − ε3 − ε4)

× [	1 + f1( f2	2 − f3	3 − f4	4)] (7)

where ni is the quasiparticle distribution function, 	i is the deviation function defined in terms
of the local equilibrium distribution function nl.e.

i (Ei) by the relation

ni = nl.e.
i [1 − nl.e.

i (Ei)]	i + n
.e.
i (Ei) (8)

and

f �Pi
= |u( �Pi )↑↑|2 − |υ( �Pi)↑↑|2 = ε �Pi

E �Pi

≡ V �Pi
. (9)

For the A1-phase we may write

f �Pi
= V �Pi

= |ε �Pi
|/(ε2

�Pi
+ �2

↑↑ sin2 θ)1/2 (10)

where θ is the angle between P̂i and the orbital anisotropy axis l̂. The second and
third terms in the interaction between the quasiparticles in equation (4) indicate the two
quasiparticle scattering process and the coalescence scattering process between the Bogoliubov
quasiparticles in the up-spin superfluid and the quasiparticles in the down-spin normal fluid.
When the collision terms are linearized we have for the two-quasiparticle scattering(

∂n1

∂ t

)
coll

= −
∑

�P2, �P3, �P4

W ′
S,N (1, 2, 3, 4)[n1n2(1 − n3)(1 − n4)(	1 + 	2 − 	3 − 	4)]

× δ �P1+ �P2, �P3+ �P4
δ(ε1 + ε2 − ε3 − ε4) (11)

where

W ′
S,N = 2π

h̄

1

4

[
1

4
|Tt − TS|2|u2

1|u4|2 +
1

4
|Tt + TS|2|u1|2|u3|2

]
. (12)
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Note that we have replaced the superfluid quasiparticle energy by the corresponding normal-
state energy in appropriate places, since this does not affect a contribution of order � �P . For
the process in which quasiparticles 1, 2 and −3 coalesce to give quasiparticle 4 the linearized
collision term is(

∂n1

∂ t

)
coll

= −
∑

�P2, �P3, �P4

2π

h̄

1

4
{[|Tt − Ts |2(|υ1|2 + |υ3|2)](n1n2n−3(1 − n4))

× δ(E1 + E2 + E−3 − E4)(	1 + 	2 + 	−3 − 	4) + [|Tt + TS|2(|υ1|2 + |υ3|2)]
× (n1n2(1 − n3)n−4)δ(E1 + E2 − E3 + E−4)

× (	1 + 	2 − 	3 + 	−4)}δ �P1+ �P2, �P3+ �P4
. (13)

If we use the particle–hole symmetry of a degenerate Fermi system we may replace E−i

by −Ei , which has been used in obtaining equation (7) too. For the viscosity consideration,
we may write 	2 = 	−2(−E2). The collision integral (13), hence, may be rewritten as
(

∂n1

∂ t

)
coll

= −
∑

�P2, �P3, �P4

2π

h̄

1

4

1

4
{[|Tt − TS|2(|υ4|2 + |υ1|2) + |Tt + TS|2

× (|υ3|2 + |υ1|2)]n1n2(1 − n3)(1 − n4)(	1 + 	2 − 	3 − 	4)}δP̄1+P̄2,P̄3+P̄4
.

(14)

Finally, by adding the collision terms in equations (11) and (14) we get
(

∂n1

∂ t

)
coll

= −
∑

�P2, �P3, �P4

2π

h̄

1

4
n1n2(1 − n3)(1 − n4)δ �P1+ �P2, �P3+ �P4

× δ(ε1 + ε2 − ε3 − ε4){[ 3
2 |Tt |2 + 1

2 |TS|2]	1 + [ f1 f2(
3
2 |Tt |2 + 1

2 |TS|2)
+ 1

2 (1 − f1 f2)(|Tt |2 + |TS|2)]	2

− [ f1 f3(
3
2 |Tt |2 + 1

2 |TS|2) + 1
2 (1 − f1 f3)(|Tt |2 + |TS|2 − 1

2 |Tt + TS|2)]	3

− [ f1 f4(
3
2 |Tt |2 + 1

2 |TS|2) + 1
2 (1 − f1 f4)(|Tt |2 + |TS|2 − 1

2 |Tt − TS|2)]	4};
(15)

one obtains the normal-state collision integral by putting fi = 1 in equation (15).

3. Viscosity

Before writing a formula for the shear viscosity we write the Boltzmann equation for the
A1-phase

−( �P1)i(�υ1) j
∂n1

∂ E1

(
∂uk

∂rl
+

∂ul

∂rk

)
=

(
∂n1

∂ t

)
coll

(16)

where the collision integral operation is written in equation (15), and we pick out the terms
in streaming terms of the Boltzmann equation which are relevant to viscosity. uk is the k
component of a spatially varying velocity �u. One would usually like to express 	i in terms
of the corresponding quantity for the normal state. For this purpose it is more convenient to
work with the function Xi ≡ 	i/Vi , since in the superfluid close to Tc1 it differs from the
normal-state value by amounts of order � �P/kB Tc.
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Hence equation (16) becomes

P̂1i P̂1 jυF PF
∂n1

∂ε1

(
∂uk

∂rl
+

∂ul

∂rk

)
=

∑
�P2, �P3, �P4

2π

h̄

1

4
nln2(1 − n3)(1 − n4)

× δ �P1+ �P2, �P3+ �P4
δ(ε1 + ε2 − ε3 − ε4)

× {[ 3
2 |Tt |2 + 1

2 |Ts |2]X1 + [V 2
2 ( 3

2 |Tt |2 + 1
2 |TS|2) + 1

2 (1 − V 2
2 )(|Tt |2 + |TS|2)]

× X2 − [V 2
3 ( 3

2 |Tt |2 + 1
2 |TS|2) + 1

2 (1 − V 2
3 )(|Tt |2 + |TS|2 − 1

2 |Tt + TS|2)]X3

− [V 2
4 ( 3

2 |Tt |2 + 1
2 |TS|2) + 1

2 (1 − V 2
4 )(|Tt |2 + |TS|2 − 1

2 |Tt − TS|2)]X4} (17)

where we put ( Vi
V1

− V 2
i ) ∼= (1 − V 2

i ), since it does not affect a contribution of order �P̄ .
Now the Boltzmann equation may be replaced by a one-dimensional integral equation.

For this purpose we define the function Q(P̂1, t1) as

	1 = υF V1

kB T
PFτo2 cosh

(
t1
2

)(
∂uk

∂rl
+

∂ul

∂rk

)
Q(P̂1, t1) (18)

where t = ε
kB T . By substituting equation (18) into (17) we get

P̂1i P̂1 j

cosh(t/2)
= (π2 + t2)Qi j (P̂1, t1) −

∫ ∞

−∞
dt ′ F(t − t ′)[α2V 2(P̂1, t ′)

+ β2(1 − V 2(P̂1, t ′))]Qi j(P̂1, t ′) (19)

where Qi j(P̂,t) ≡ Q(P̂ , t)P̂i P̂j ,

α2 = 2〈WN (θ, φ)[−P2(cos θ12) + P2(cos θ13) + P2(cos θ14)]〉/〈WN (θ, φ)〉, (20)

β2 = 2

〈
2π

h̄

1

4

[
−1

2
(|Tt |2 + |TS|2)P2(cos θ12) +

1

2

(
|Tt |2 + |TS|2 − 1

2
|Ts + Tt |2

)
P2(cos θ13)

+
1

2

(
|Tt |2 + |TS|2 − 1

2
|Tt − Ts |2

)
P2(cos θ14)

]〉/
〈WN (θ, φ)〉, (21)

θi j denotes the angle between �Pi and �Pj ,

〈WN (θ, φ)〉 ≡
∫

d�

4π cos(θ/2)

2π

h̄

1

8
(3|Tt |2 + |TS|2) (22)

and

F(t − t ′) ≡ t − t ′

2 sinh[(t − t ′)/2]
.

Bhattacharyya et al [5] by using the S- and P-wave approximation for the scattering
amplitudes calculate the values of α2 and 〈WN (θ, φ)〉 for different values of pressure. Here
we use the Pfitzner procedure [11] for calculating the values of β2 and α2 which appears in
equation (19). It should be noted that the β2-coefficient comes through the one-dimensional
integral equation for the presence of the new scattering processes in the A1-phase. We can use
the quasiparticle scattering amplitude (QSA) of normal Fermi fluids instead of superfluid QSA
for temperatures near Tc↑. By using a general polynomial expansion of the QSA in normal
Fermi fluids in equations (20)–(22), namely [11]

υ(0)Ts,t =
∞∑

k=0

k∑

=0

a
k X
k(v, P) (
 even, odd) (23)
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where the coefficients with 
 even (odd) belong to the singlet (triplet) part of the QSA,

X
k(v, P) = (k + 1)1/2(2
 + 1)1/2(P2/4 − 1)
 P
(v)P(2
+1,0)

k−
 (P2/2 − 1)

k = 0, 1, . . . , ; 
 = 0, 1, . . . , k, (24)

P = 2 cos
θ

2
, v = cos φ. (25)

Moreover, since we follow the procedure of Pfitzner [11] in calculating the QSA in the normal
fluid at Tc↑, we may truncate equation (23) at k = 3 for pressure 34.4 bar. By using the values
of a
k from table 3 of [11] and performing numerically the integrals in equations (20) and (21),
we get the following results:

α2 = 1.48 and β2 = 0.72.

Now we write a formula for the shear viscosity. The momentum flux tensor may be written
as ∏

lm
=

∑
�P

�Pl

(
∂ E �P
∂ �Pm

)
δn �P (26)

where δn �P = n �P −nl.e.
�P characterize the deviation from local equilibrium,and from equation (8)

we have

δ n �P = nl.e.
�P (l − nl.e.

�P )	 �P . (27)

The shear viscosity is a fourth-rank tensor, which is defined by the relation
∏

lm
= −ηlmi j

(
∂ui

∂r j
+

∂u j

∂ri

)
. (28)

In writing the above equation we have supposed that l �= m and i �= j . When equation (27),
with consideration of equation (18), is substituted in equation (26) and then compared with
equation (28), we get

ηlmi j = 15η〈〈(V Xlm, V Qi j )〉〉 ≡ 15ηYlmi j (29)

where η = 1
5ρ m∗

m v2
Fτ0, τ0 is the characteristic relaxation time and is given by

τ0 = 8π4h̄6

m∗3(kB T )2〈WN 〉 , (30)

Xlm ≡ P̂l P̂m

cosh(t/2)
, (31)

〈〈· · ·〉〉 =
∫

d� �P
4π

, . . . , (32)

and

(A, B) =
∫ ∞

−∞
A(t)B(t) dt . (33)

The kernel in the integral equation (19) has no structure on a scale t ≈ �
kB T and we may write

equation (19) in the form

Xi j = (H0 + H1)Qi j (34)

where Ho Qi j is the right-hand side of equation (19) with V = 1, and

H1 Qi j ≡
∫ ∞

−∞
dt ′ F(t − t ′)(1 − V 2(t ′))(α2

2 − β2
2 )Qi j(t

′) = π(α2 − β2)�̃ �P Qi j (0)F(t). (35)
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In obtaining the last term in equation (35) we have used the following formula for any
function A(t) having no structure on a scale �/kB T :∫ ∞

−∞
A(t)[1 − V 2(t)] = A(0)

∫ ∞

−∞
[1 − V 2(t)] dt = π A(0)�̃ (36)

where �̃ = �
kB T . The dimensionless viscosity in equation (29) can be written as

Ylmi j = 〈〈(Xlm , Qi j )〉〉 − 〈〈(Xlm , (1 − V 2)Qi j)〉〉 = 〈〈(Xlm , Qi j )〉〉 − π〈〈�̃Xlm(0), Qi j (0)〉〉;
(37)

we write Qi j = Q0i j + Q1i j , where Q0i j is the unperturbed solution and Q1i j ∝ � �P is the
change due to the perturbation. By equating the terms independent of � �P and those linear in
� �P to zero in equation (34), we have

Xi j = H0 Q0i j

0 = H1 Q0i j + H0 Q1i j or Q1i j = −H −1
0 H1Q0i j

(38)

where the first equation is the normal-state Boltzmann equation. Hence to the lowest order in
�̃ we have

Ylmi j = 〈〈(Xlm , Q0i j )〉〉 − 〈〈(Xlm , H −1
0 H1Q0i j )〉〉 − π〈〈�̃Xlm(0), Qi j (0)〉〉. (39)

The second term in the right-hand side of equation (39) can be written as

〈〈(Xlm , H −1
0 H1 Q0i j )〉〉 = π(α2 − β2)

〈〈
�̃P Q0i j (0)

∫ ∞

−∞
dt F(t)Q0lm (t)

〉〉
. (40)

The integral term in equation (40) can be obtained simply by putting t = 0, V (t) = 1 in
equation (19). Finally we may write

ηlmi j = ηn
lmi j − 15η〈〈P̂l P̂m P̂i P̂j�̃ �P〉〉

[
π QN (0)

β2

α2
+ π3 Q2

N (0)

(
1 − β2

α2

)]
(41)

where ηn
lmi j = η(δliδmj + δl jδmi )(X, QN ) = ηYN . The values of QN (0) and YN have been

evaluated by Bhattacharyya et al [5].
If the orbital axis is taken to be the Z axis, the shear viscosity has two different components,

ηxy and ηzx = ηzy . The angular expressions in (41) for these components are

〈〈Px Py Px Py�̃ �P〉〉 = (5π/256)�̃max

〈〈Pz Px Pz Px�̃ �P〉〉 = ( 4
5 )(5π/256)�̃max

(42)

where �max is the maximum value of the A1-phase gap parameter. Formula (41) and (42) give

δηxy

ηxy
= −

(
75π

256

)[
π QN (0)

β2

α2
+ π3 Q2

N (0)

(
1 − β2

α2

)]
�̃max

and
δηzx

ηzx
= −

(
4

5

)(
75π

256

)[
π QN (0)

β2

α2
+ π3 Q2

N (0)

(
1 − β2

α2

)]
�̃max. (43)

4. Conclusions and some remarks

To compare the results with the experiments [2–4] one has to know �max as a function of
temperature. Pethick et al [6] by taking the spin averaged gap generalize their results of the
A-phase to the A1-phase. In weak-coupling theory one has �max(T ) = (5/4)1/23.06kBTc(1 −
T
Tc

)1/2 for the ABM state and, hence, the spin averaged gap in the A1-phase is �max =
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3.42[ 1
2 kB TC↑(1 − T

TC↑ )1/2]. By taking the strong-coupling effect into account, finally we

have �max = 3.54[ 1
2 kB TC↑(1 − T

Tc↑
)1/2].

As we mentioned previously, these scattering processes between the quasiparticles in the
up-spin superfluid and quasiparticles in the down-spin normal fluid play an important role in
obtaining the Boltzmann equation for the A1-phase.In this paper we take them into account
and the results show themselves through the factor β2 in equations (19) and (41).

The values of α2 and β2 depend slightly on the pressure through the Landau parameters.
For pressures 21 bar and 34.36 bar, the melting pressure, the values of β2 are respectively 0.79
and 0.72. The values of the last bracket in equation (43) for 21 and 34.36 bar pressures are
respectively 2.27 and 2.12.

The viscosity data in the A1- and A2-phases of superfluid 3He were analysed by Alvesola
et al [4] in terms of a coefficient which gives the viscosity in the A1-phase, and the result
for temperatures close to Tc1 and at melting pressure is δη

η(Tc1)
= −(2.7 ± 0.2)(1 − T

Tc1
)1/2.

This formula also fits with the data of Roobol et al [3]. Our results for P = 21 bar are
δηx y

ηx y
= −2.09�̃max and δηzx

ηzx
= − 4

5 (2.09)�̃max, and for the melting pressure we have δηx y

ηx y
=

−1.92�̃max and δηzx

ηzx
= − 4

5 (1.92)�̃max. One expects that in the experiments the measured

viscosity is (ηxy + ηzx)/2 [6], hence we have δη

η
= −3.30(1 − T

Tc1
)1/2,

δη

η
= −3.05(1 − T

Tc1
)1/2

for pressures of 21 and 34.36 bar respectively. We therefore see that agreement between our
results and the experiments is fairly good.
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